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Optimization and Non-negativity

Signomial: Exponential sum supported on finite 7 C R":

f=Y cae™, coeRforallacT.
aET

Signomial optimization problem

F* =inf{f(x) : x eER"} =supfA € R : f — \ > 0}

e Deciding non-negativity NP-hard in general — find suitable

certificate of nonnegativity.
e Sparse approaches building upon earlier work by Reznick
based on
e SONC (lliman, de Wolff, 2016) or
e SAGE (Chandrasekaran, Shah, 2016)



Symmetric problem: invariant under some group action

1. We prove a symmetry-adapted decomposition theorem for
SAGE exponentials.

2. This decomposition reduces the size of a Relative Entropy
Program deciding non-negativity.
3. Computational experiments:

e Strong reductions of size and computation time
e Cases where symmetry-adapted computation succeeds when
conventional SAGE computation fails



Sums of Arithmetic-Geometric
Exponentials



AGE exponentials

e Arithmetic-geometric exponential: For (§ # A C R" finite:
> acA Ca elxa) +cg e®h) with ¢, >0 forall a € A

e Non-negativity can be certified via arithmetic-geometric
inequality

e SAGE cone: Sums of AGE exponentials

e Optimization approach: 7 := AU B with disjoint sets
 # A C R", corresponding to positive coefficients c,,
B C R" corresponding to negative coefficients cg

—f = Z co e 4 Z cge™P),

acA BeB



Example: Exponential version of Motzkin polynomial
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Figure 1: Motzkin

— is an AGE exponential.



Some results on the SAGE Cone

e Chandrasekaran, Shah: Deciding membership in the SAGE
cone can be done efficiently via Relative Entropy Programming

e lliman, de Wolff: For a subclass, efficient optimization via
Geometric Programming is possible

e Murray, Chandrasekaran, Wierman (for polynomials also
observed by Wang): Sparsity of the support of a SAGE
exponential is preserved in any decomposition

e Murray, Chandrasekaran, Wierman: Constrained SAGE
approximation efficiently computable using REPs and the

support function

e Murray, N., Theobald: Sublinear circuits for constrained SAGE



Relative Entropy Characterization

e Relative Entropy Function: D : ]R“;‘O X R;“O — R with

D(v,y) = Y valn <zz>

acA
for ) ## A C R” finite

Theorem (Murray, Chandrasekaran, Wierman)

Signomial f belongs to Csagr(A, B) iff for every 5 € B there exist
cB ¢ Rﬁ and v ¢ Rf such that

> u&ﬁ)(a —pB) = 0 forevery g € B,
acA

D) e . c(B)) cg for every g € B,

<
> P < ey for every a € A.
BeB



Symmetry reductions in AM/GM
based Optimization




Some Notation

e G finite group acting linearly on R” on the left
e Orbit of set S C R" of exponent vectors under G:

G-S={o(s):s€S, o€ G}
Set of Orbit Representatives S C S for S: inclusion-minimal
set with (G -8) = S.
Stabilizer of 5: Stab :={c € G : o(8) = 5}
Left Quotient Space

G/Stab(B) ={{h€ G: Fo € Stab(p) with h=g-c}: g€ G}



Main results(1)

Reminder: f =", cae™® + Y peB cze®B € RT with
A € Rg‘_‘, as € —R_‘i with orbit representatives B of .

Theorem (Moustrou, N., Riener, Theobald, Verdure)

A G-symmetric f € Csage(A, B) iff for every B € B, there exists
an AGE exponential h; € Cace(A, B) such that

f=> > orh

BeB peG/ Stab(B)

and hj invariant under the action of Stab()



Idea of proof

Clearly, signomial f = ZﬁeB ZpeG/Stab(B) phé non-negative
f € Csace(A, B) = for every 8 € B exists f3 € Cace(A, B):

f G-symmetric implies:

1 1
f:ﬁZJf:@ZZJfB.

g€G o€G BeB

Idea: Group all ofg that have same “possibly negative” term:

1
hy=—S of s
el



Main results(2)

Theorem (Moustrou, N., Riener, Theobald, Verdure)

G-symmetric f € Csagr(A, B) iff for every 5 € B there exist
c®) € R4, (A € R4, invariant under the action of Stab(f), s. t.

Z y&é)(a —B) = 0 forevery g B,
acA

D@ e Py < cs for every B € B,

Z Z cgfi) < ¢, forevery a € A.
BeB oeStab (8)\G

— Stab(B)\G: right quotient space



Example: Comparison of Standard and Symmetric Method

(274) £3
f =14 e2xt4y 4 ohx+2y +5(ex+2y +62X+Y)
x x (4.2)T
— has optimal value § = —/2, (1’22, e (4,2)
< (2,1)
(0,0)

e Standard REP : |B|-n+ |B| + |A| =9 ineq., |B| - |A| = 6 var.
e Symmetric REP: |B|-n+|B| +|A| = 6 ineq., |B]-|A| = 3 var.
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The Case of the Symmetric Group




Stabilization of Symmetric REP

Symmetric group: S,

— wt(a) weight of @ € R": number of non-zero coordinates

Theorem (Moustrou, N., Riener, Theobald, Verdure)
Let w € N be fixed, A, B C R" with sets of orbit representatives
.%Al,[;’, and

max wt(§) < w.
3e AuB

= For all n > 2w, f € Cspge(A, B) Sp-invariant: Symm. REP has

#coeff. < |A| + |B| + |B|(w+1) and #var. < 2|B||Alu(w),

where u(w) = ZW: <V}/)2i!.

i=0



Exemplary Comparison of the numbers of variables and con-

straints

e Examples: Function with exponents in A, B C R" and orbit
representatives /Al, B

e Extremal situations: Orbits either very large or very small

Standard method Symmetric method

|B| | |A] # Var. # Coeff. # Var. | # Coeff.
1 | n 2n! + 3 n'+n+2 5 4

n | n | 2(n+1)nt+1 | (n+1)(n'+1)| 2n+3 n+3
n | nb | 2(nt+1)nl+1| nl(n+2)+1 | 2n1+3| n+3
n| n | 2n(n+1)+1 (n+1)2 7 5

Table 1: Comparison of the parameters when A = {0, 4} and B = {3}.
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Numerical Experiments




e Underlying group: Symmetric group S,

e Standard method: Classical REP without exploitation of
symmetries

e Symmetric version (including combinatorial techniques to
further reduce size)

e dim: Dimension of the exponential sum
e V,:= Number of auxiliary variables v in REP
e C,:= Number of coefficients in REP

e t:= Running time of REP (including preliminary
computations)
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Example (1)

Standard method

Symmetric method

dim Vi G t Vo | Gy t

2 13 9 0.0185 || 7 | 5 | 0.0311
3 49 28 0.0454 | 9 | 6 | 0.0264
4 241 125 0.1701 || 11 | 7 | 0.0318
5 1441 726 0.8433 | 13 | 8 | 0.0384
6 10081 5047 5843 || 15 | 9 | 0.0458
7 80641 40328 66.67 || 17 | 10 | 0.0538
8 725761 362889 2211 19 | 11 | 0.0626
9 7257601 | 3628810 = 21 | 12 | 0.0835
10 || 79833601 | 39916811 = 23 | 13 =

Table 2: Exponential sum with B =38, - {(1,2,...,n)7} and
A=, {(m,0,...,0)T}

ii5)



Example (2)

Standard method Symmetric method
dim Vi, G t Ve | G t
2 13 9 ]0.0323 7 5 | 0.0465
3 85 31 | 0.0603 | 15 6 | 0.0569
4 1201 145 - 51 7 | 0.1301
5 29041 841 — 243 | 8 | 0.6215
6 1038241 | 5761 - 1443 | 9 -

Table 3: Exponential sum with two orbits of maximal size
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e This paper also includes:

e Symmetric decomposition theorem also works for the
constrained situation

e Follow-up work will include:

e Minimizers of symmetric SAGE exponentials
e The symmetric SAGE cone and the non-negativity cone
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Thank you for your attention!
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